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Co-infections of hosts by multiple pathogen species are ubiquitous, but
predicting their impact on disease remains challenging. Interactions between
co-infecting pathogens within hosts can alter pathogen transmission, with
the impact on transmission typically dependent on the relative arrival
order of pathogens within hosts (within-host priority effects). However, it
is unclear how these within-host priority effects influence multi-pathogen
epidemics, particularly when the arrival order of pathogens at the host-
population scale varies. Here, we combined models and experiments with
zooplankton and their naturally co-occurring fungal and bacterial pathogens
to examine how within-host priority effects influence multi-pathogen epi-
demics. Epidemiological models parametrized with within-host priority
effects measured at the single-host scale predicted that advancing the start
date of bacterial epidemics relative to fungal epidemics would decrease
the mean bacterial prevalence in a multi-pathogen setting, while models
without within-host priority effects predicted the opposite effect. We
tested these predictions with experimental multi-pathogen epidemics.
Empirical dynamics matched predictions from the model including
within-host priority effects, providing evidence that within-host priority
effects influenced epidemic dynamics. Overall, within-host priority effects
may be a key element of predicting multi-pathogen epidemic dynamics in
the future, particularly as shifting disease phenology alters the order of
infection within hosts.

1. Introduction

Epidemics of infectious diseases can strongly influence natural, agricultural and
human populations. They can result in rapid degradation of host health,
regulate host-population dynamics and even put species at risk of extinction
[1-3]. Predicting the dynamics and severity of epidemics ahead of time is there-
fore imperative for timely public health interventions, such as limiting trade of
infected livestock or immunizing at-risk human and wildlife populations. How-
ever, the vast majority of host populations is co-infected by multiple pathogen
species [4-7], and the epidemics of different pathogens often alter one another’s
trajectories. For instance, influenza epidemics historically increased population
susceptibility to pneumonia [8]. Thus, understanding how co-infecting pathogens
interact at the individual and population scales is essential to predict epidemic
dynamics and mitigate epidemic severity.

Co-occurring pathogens can increase or decrease one another’s epidemic
severity by interacting at the individual host scale. Pathogens can interact by
competing for resources such as nutrients or body tissue, by directly interfering
with or facilitating one another (e.g. by producing bacteriocins), and/or by
indirectly interacting via the immune system [9-12]. These within-host inter-
actions alter host susceptibility, pathogen transmission rates and the duration
of infections, thus determining the rate at which pathogens transmit through
a host population [13,14]. Therefore, the severity of an epidemic may be difficult
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to predict without knowing the identities of co-infecting
pathogens and how they interact within hosts.

While the many ways that pathogens interact within hosts
are well documented [15], scaling these interactions up to
predict epidemic severity has proven challenging because
within-host interactions are influenced by the order of patho-
gen arrival at multiple spatial scales [16]. Within-host
interactions have a deterministic component based on fitness
asymmetry between pathogens but can be modified by the
order in which pathogens infect hosts, both in multi-strain
co-infections [17] and in multi-species co-infections [18].
These within-host priority effects can alter both the strength
and direction of within-host interactions [19] and can alter
disease risk [20]. Furthermore, the first pathogen to spread
through a host population during a multi-pathogen epidemic
is likely to be the first pathogen to infect individual hosts
[16,21]. Thus, differences in the arrival order of co-occurring
epidemics can alter within-host interactions and thereby
could change epidemic dynamics. However, large enough
interspecific asymmetry in pathogen fitness within and
across hosts could override context-dependent within-host
priority effects. In this scenario, infection order may not be
important and will simply add ‘noise’ to the dynamics of epi-
demics. Given that variation in the timing of epidemics is
common because pathogens typically respond differently to
seasonal forcings [22], it is important to understand whether
within-host priority effects can alter epidemic severity and
whether measuring them will allow us to better predict
future epidemic dynamics.

One challenge to understand the role of within-host pri-
ority effects in determining epidemic severity is that within-
host priority effects may themselves be context-dependent.
Many studies have documented within-host priority effects
experimentally [18,23-26], but these interactions are often
measured in isolated hosts under ideal conditions that do not
reflect the complex, stressful and ever-changing environmental
conditions hosts and pathogens experience during epidemics.
For instance, host and pathogen populations at the start, peak
or end of an epidemic experience very different resource con-
ditions [27], population densities [2] and age/stage structures
[28] that could all modify within-host interactions and thus
alter within-host priority effects. Consequently, measuring
within-host interactions and priority effects experimentally in
isolated hosts may not allow us to understand their role in
determining epidemic dynamics at the host-population scale.

To help fill these conceptual gaps, we asked the following
two questions. (1) How does relative epidemic start date inter-
act with within-host priority effects to alter epidemic dynamics?
(2) Does measuring within-host priority effects at the individual
host scale improve our ability to predict multi-pathogen epi-
demics? To answer these questions, we used individuals and
populations of zooplankton co-infected with naturally co-
occurring fungal and bacterial pathogens as a model system.
We ran predictive epidemic models parametrized with or
without within-host priority effects and then tested the pre-
dictions of these models with experimental multi-pathogen
epidemics. Predictive models with or without within-host
priority effects showed clear qualitative differences in the
impact of epidemic arrival order on epidemic dynamics,
and our experimental epidemics qualitative matched patterns
predicted only by our within-host priority effect model.
Together, these results indicate that within-host priority
effects interact with a relative epidemic start date to alter

multi-pathogen epidemic dynamics in our system and that
we might better predict multi-pathogen epidemics by
taking within-host priority effects into account.

We predict that epidemic timing will alter epidemic dynamics by
creating feedback loops mediated by within-host priority effects.
The first pathogen to enter a host population will most likely be
the first pathogen to enter individual hosts in the first host gener-
ation of a multi-pathogen epidemic. In later generations, an
epidemic arrival order will alter the order of infection at the
single-host scale indirectly. The arrival order in the first generation
of hosts will determine the transmission of pathogens from those
hosts and thus the force of infection of both pathogens. When two
pathogens circulate in a host population, the pathogen with the
higher force of infection will be more likely to infect hosts first
[19]. Thus, the relative start dates of co-occurring epidemics can
indirectly alter the arrival order of pathogens at the single-host
scale several generations after the start of the epidemics.

It is intractable to measure these priority effect-mediated
feedback loops directly, as we would need to measure both the
infection order of pathogens in each individual host and the
transmission of pathogens from those hosts, during an epidemic.
Instead, we built predictive epidemic models parametrized with
experiments conducted at the single-host scale and ran these
models with and without within-host priority-mediated feed-
back loops. This approach allowed us to understand how these
feedback loops influence multi-pathogen dynamics and isolate
within-host priority effects from effects arising simply from co-
infections. We then tested the qualitative predictions made by
our epidemic models by running experimental multi-pathogen
epidemics in the laboratory.

We built models to predict epidemic dynamics in the zooplank-
ton species Daphnia dentifera (henceforth ‘zooplankton’). This
zooplankton species is common in lakes in the midwestern
USA [29]. In late summer, zooplankton populations commonly
host pathogens, including the fungus Metschnikowia bicuspidata
and the bacterium Pasteuria ramosa (henceforth ‘fungus’ and
‘bacterium’). While lakes differ in their pathogen communities,
the fungus and bacterium do co-occur in some lakes. Zooplank-
ton ingests infectious spores of both pathogens while filtering for
algae. After ingestion, spores replicate until host death, at which
point they escape into the water column until they are ingested
by a new host [30]. For this study, we used a clonal zooplankton
line (Mid37) and pathogen isolates that had been grown in
laboratory for several years (‘Standard’ fungus and ‘G/18
bacterium).

To predict the impact of within-host interactions and within-host
priority effects on epidemic severity and to test whether we can
predict epidemic severity by measuring within-host interactions
experimentally, we ran multi-pathogen epidemic simulations
parametrized with experimental measurements of within-host
priority effects. We compared models which (i) included
within-host interactions, (ii) included within-host interactions
but not within-host priority effects, and (iii) did not include
any within-host interactions (figure 1). We include a no within-
host interaction model to determine whether co-infection and
epidemic arrival order alter epidemic dynamics purely by
altering host-population dynamics.

We parametrized our model with within-host priority effects
measured and fully described in [31]. Age-controlled hosts were
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Figure 1. Pathogen fitness in all models: those that contained within-host interactions/priority effects, corresponding to empirical data (full model), those that did
not contain within-host priority effects (no priority effects) and those that did not contain any within-host interactions (no interactions). The fitness of pathogens
was measured as the average number of infectious spores released from hosts at death [31]. Points indicate the relative spore yield of pathogens in co-infected hosts
compared to the mean spore yield of singly infected hosts when the fungus arrived first (fun), when pathogens arrived at the same time (simul) or when the
bacterium arrived first (bac). Blue points represent the bacterium and yellow points represent the fungus. The grey shading indicates the likelihood that a pathogen
will be competitively excluded, ranging from 0 in the white to 1 in the darkest grey (see electronic supplementary material, for calculation). Bars indicate 95% of
posterior estimate for each point. Raw data and relevant methods can be found in Clay et al. [31]. (Online version in colour.)

singly infected, simultaneously co-infected or sequentially
infected, with either the bacterium or the fungus arriving 4
days after the other pathogen. Comparing glms with heterosce-
dasticity using the glht function in R [32], we determined that
fungal spore yield (number of infectious spores in the host at
death) was significantly lower in co-infected hosts the fungus
arrived first when compared with other co-infected host classes.
Bacterial spore load was significantly lower in co-infected hosts
than singly infected hosts in all cases. To parametrize the
within-host priority effects for this study, we used the R2jags
package in R [33] to find Bayesian estimates of the mean
values of fungal spores (normally distributed) and bacterial
spores (Poisson distributed) from each infected host class
(figure 1). We used a Bayesian approach to more efficiently
carry forward uncertainty through nested layers of modelling
(parameters estimated from single hosts were used to estimate
parameters in single-pathogen epidemics, which were used to
make predictions about multi-pathogen epidemics).

Here, we present our full model that includes both within-
host interactions and within-host priority effects (figure 2). See
electronic supplementary material, methods for equations
describing all models and for discussion of model assumptions.
We model epidemics as a discrete-time SI system of environmen-
tally transmitted bacterial and fungal pathogens, with
environmental spore pools B and F. Hosts may be susceptible
(S), singly infected (I or If), co-infected simultaneously (Cgim),
sequentially infected with the fungus first (Crg) or sequentially
infected with the bacterium first (Cpp). Further, upon co-
infection, pathogens may competitively exclude one another.
Hosts in class X gim, Xirp or X;pr were previously co-infected,
but pathogen i competitively excluded its competitor within
the host. Once a pathogen has been competitively excluded, it
cannot re-infect a host.

To differentiate between simultaneous co-infections (infec-
tions occur on the same day) and sequential co-infections
(infections happen on different days), we model dynamics in dis-
crete time, with a time step of 1 day. Dynamics of the susceptible
class are given by

S[+l = St
Births
—_— Infection
Nf,]‘ N
=+ bSH 1-— T — (OB,t =+ 01:/[ — OB,tep,[)St —DeathstSt ,

(2.1)

where b is the number of offspring/host/day at low population
density, K is the host carrying capacity and N, is the total

population size at time f. In experimental, single-pathogen epi-
demics (described below), we observed no developing
offspring in the brood chamber of any infected zooplankton.
Thus, infected hosts do not give birth in our model. Hosts
must go through a juvenile stage, lasting j days, before they are
counted as part of the susceptible, adult population. Susceptible
hosts become singly infected by feeding on spores in the water
column. Thus, 6;; is the proportion of hosts to become infected
by pathogen i at time ¢, given by

03[{ = ft,u,BB[ (22)
and
Ort = frpeFs, (2.3)

where f; is the total proportion of spores in the environment eaten
by each host at time step ¢, and y; is the per spore infectivity of
pathogen i (equations (2.2) and (2.3) were established to be
mass action processes based on previous experiments, see elec-
tronic supplementary material). We assume that pathogens do
not alter host susceptibility to one another, as shown in [31]. In
these prior experiments, we found that the order of infection of
the fungal and bacterial pathogens only altered spore yield. We
found no evidence of protection or immune suppression (prior
exposure by one pathogen did not reduce or increase the likeli-
hood of infection by the other pathogen). Thus, we assume
that infection likelihood is not altered by the infection status of
the host. The proportion of susceptible hosts to become simul-
taneously co-infected at time t is ;0 and the proportion of
susceptible hosts to become singly infected by pathogen i is the
proportion of susceptible hosts to become infected by pathogen
i, minus the proportion of those hosts to also become simul-
taneously co-infected. At no point in our simulations does 6g;
or 0, become greater than one. Finally, d; is the rate of intrinsic
host mortality.

Hosts singly infected by the fungus may become co-infected
upon ingesting bacterial spores, and vice versa. Upon co-
infection, the probability of remaining co-infected until death
with no competitive exclusion is ®;, where j is the co-infection
class. Ap; is the probability that the fungus will competitively
exclude the bacterium, and A; is the probability that the bacter-
ium will competitively exclude the fungus. See the electronic
supplementary material for the calculation of competitive exclu-
sion probabilities. After the fungus is cleared from infected hosts,
the hosts can become reinfected by the fungus, returning to their
original co-infected class. Upon reinfection, the bacterium and
the fungus may once again competitively exclude one another,
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Figure 2. Model flowchart, highlighting most likely transmission pathways
for each multi-pathogen experimental treatment, e.g. in our ‘bacterium
first’ treatment, we predict susceptible individuals will first become singly
infected by the bacterium (/z) and then co-infected (Czr). (Note, however,
that all highlighted transmission pathways can occur in all treatments.)
Blue is used to indicate state variables and parameters related to the bacter-
ium, including hosts singly infected by the bacterium (/), bacterial infection
(solid blue arrow), bacterial spore release (dashed blue arrow) and bacterium
competitively excluding the fungus within hosts (dotted blue arrow). Simi-
larly, yellow represents state variables and parameters related to the
fungus, including hosts singly infected by the fungus, fungal infection,
fungal spore release and the fungus competitively excluding the fungus
within hosts. Green represents co-infected hosts and simultaneous co-
infection. Multi-coloured lines mean that hosts can move back and forth
between two classes. Line thickness represents relative rate, e.g. bacterial
spore release is less from co-infected individuals than from singly infected
individuals, and thus, the bacterial spore release line is thinner from co-
infected hosts. Note that competitive exclusion happens instantaneously
upon co-infection, thus individuals move directly from singly infected individ-
uals to deared individuals in model equations. (Online version in colour.)

with the original probabilities associated with that co-infected
class. We assume that once the bacterium is excluded by the
fungus, it cannot re-infect hosts, as the time between fungal
infection and host death is relatively short. Finally, since fungal
infection reduces host lifespan [31], all hosts infected by the
fungus die at an increased rate (dp), with their death rate

reverting to dg if the bacterium excludes the fungus. Thus, n

changes in the numbers of infected and co-infected hosts are
then given by

Infection Coinfection ~ Deaths
—_— —N— ~ =
Ipty1 = It + (O (1 — Op))Sy — Oplgy —dslpy, (2.4)
Infection Coinfection ~ Deaths
—fN— —N— ~ =
Iri1 =Ips + (O (1 — 0))St — Opelry —drlr:, (2.5)
Coinfection Reinfection Deaths

——
Csimt+1 = Csimt + 08,101 0sim St + OFt Wsim XB simt — ArCsimyt,  (2.6)

XB,sim,t+1 = XB/sim,iL

Competitive Exclusion Reinfection Deaths
——
+ O8Ok iArsimSt — OriXBsim (1 — Arsim) — dsXBsimt ,
27)
XFsim,t+1 = XFsim,t
Competitive Exclusion Reinfection Deaths
—
+ OtOFiABsimSt + OFtABsim XBsimt — AFXFsimyt ,
(2.8)
Coinfection Reinfection Deaths
—_—~—— —,— A=
Ceri+1 = Crt + Optwprlpt + O wpr Xpprs — drCry , (2.9)
XpBrt+1 = XB,BEt
Competitive Exclusion Reinfection Deaths

—— —_——
+  OeeArprlpy  — 0+ Xpari(1 — Appr) —dsXpar:,

(2.10)
XrBFi+1 = XFBFt
Competitive Exclusion Reinfection Deaths
—_—— —_—
+  OpiABprlp:  + O ABBrXBBEr — dEXFBF:,
2.11)
Coinfection Reinfection Deaths
Cr+1 = Crpyt + 0t wrplp; + O wrpXp et —ArCrpy, (2.12)
XBrBt+1 = XBFBt
Competitive Exclusion Reinfection Deaths

— ———
+  OiArrBlry  — Or:XprBi(1 — ArFB) —dsXp B

(2.13)
and
XFrBt+1 = XFFBt
Competitive Exclusion Reinfection Deaths
—~— ———
+  OgiAgrelrt  + OriABrXBrBt — ArXE By -
(2.14)

Infected hosts transmit spores into environmental spore
pools upon death, whose dynamics are given by

Bi1=B;
Spore Release

+dsByw (I + Xp,rs + Xprps + Xpsimt) + ArBpwr Cor,t + ArBoen) Cra .t + ArBpsim Coim ¢

Loss Uptake
AN ——
— apB; — fiupBiN:
(2.15)

and

Fr+1 :F.‘

Spore Release

+ drBry Uk + Xp et + Xpppt + Xpsimt) + drBear)Cort + ArBres)Cra,t + drBr(sim Csim t
Loss Uptake

—~ = —
— arF; — ftF[NIt/

(2.16)

where f;(;) represents the number of spores i released from host
class j. Thus, all hosts that are infected by a given pathogen add
spores of that pathogen to the environment upon death. We
assume that if a pathogen is competitively excluded from a
host, the host’s spore yield reverts to that of a singly infected
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Table 1. Treatments in host-population scale experiments.

treatment no. treatment day 2 treatment day 9
1 control control

2 fungus control

3 bacterium control

4 fungus/bacterium control

5 fungus bacterium

6 bacterium fungus

host. Spores have a loss rate (o;), which represents spore degra-
dation and spores moving out of the system (e.g. due to
settling), and fungal spores are removed from the environment
by host feeding (f) [34]. Bacterial spores, alternatively, can sur-
vive passage through the host gut and thus are not removed
by host feeding unless they actively infect the host [35].

Models were parametrized with a combination of three
experiments. First, we measured the lifespan and birthrates of
uninfected hosts with a life table experiment (electronic sup-
plementary material). We then measured pathogen fitness
(infectious spores released upon host death) in singly infected,
sequentially infected and simultaneously co-infected hosts [31].
Finally, we estimated carrying capacity and spore degradation
from the uninfected and singly infected treatments of our exper-
imental epidemics (electronic supplementary material). All
parameters were estimated with the R2jags package in R [33],
in order to create Bayesian posterior distributions of parameter
value probabilities. See electronic supplementary material for
full methods and all parameter values (electronic supplementary
material, table S1).

To predict epidemic dynamics under shifting epidemic
arrival order, we ran our model under conditions where fungal
epidemics started a week before bacterial epidemics, where
epidemics started simultaneously and where bacterial epidemics
started a week before fungal epidemics, matching our experimen-
tal treatments (table 1). We simulated each scenario 1000 times,
each time drawing parameters from posterior distributions of
Bayesian parameter estimates (electronic supplementary material).
Within-host interactions and priority effects in this system primar-
ily impact infectious spore production [31]. Thus, for our model
with no within-host interactions, we set the spore release rate
from all co-infected hosts equal to the spore release rate from
singly infected hosts. For our model which included within-host
interactions but no within-host priority effects, we set the spore
release rate of sequentially co-infected hosts equal to that of simul-
taneously co-infected hosts (figure 1; see electronic supplementary
material for exact equations for each model).

(c) Testing model predictions
To test our epidemic model predictions empirically, we ran
experimental multi-pathogen epidemics. We seeded 11 beakers
of filtered pond water with 100 adult zooplanktons each on
day 1 of the experiment. On day 2, we homogenized singly
infected zooplankton to create infectious spore slurries and
seeded beakers with either 190 fungal spores ml™", 1000 bacterial
spores ml™!, 190 fungal spores ml™' and 1000 bacterial spores
ml™, or a controlled dosage of ground-up uninfected Daphnia.
We repeated this procedure on day 9 to create populations
with no epidemics, single-pathogen epidemics or multi-pathogen
epidemics with varying epidemic arrival orders (table 1), with
eight replicate populations per treatment.

To monitor host—pathogen dynamics, we subsampled 1/10th
of each zooplankton population every 5 days, filtering out

Daphnia and returning water to each replicate after sampling. “

Juveniles were counted and discarded. Adult individuals were
homogenized and infectious spores inside each adult were ident-
ified. We then categorized adult zooplankton as uninfected,
singly infected by the fungus, singly infected by the bacterium
or co-infected. We ran the experiment for 67 days, ending
when the majority of infected populations had gone extinct.
We fed each replicate 20 000 Ankistrodesmus sp. cells per millilitre
4 days a week (Monday, Tuesday, Thursday, Friday).

(d) Comparing models predictions and experimental
epidemics

To compare model predictions and empirical epidemics, we
focused on treatment differences in three key metrics that charac-
terize a different aspect of epidemics: mean prevalence, epidemic
length (time between first observed and last observed infected
host) and integrated prevalence (the summed prevalence across
all sampling dates). For each metric and pathogen, we first calcu-
lated significant pairwise differences between single-pathogen
epidemics and each multi-pathogen epidemic treatment.
Second, for each pathogen, we calculated the relationship
between a metric and the relative timing of infection (day of
fungal spore introduction —day of bacterial spore introduction)
among our co-infected treatments. Residuals of the mean fell
under gamma or normal distributions for all variables in each
treatment. Thus, all comparisons were performed with the
generalized linear model (glm) function in R [36].

Our models predicted that within-host priority effects
resulted in testable differences in a key aspect of epidemics (see
Results) across arrival treatments. Thus, if our no interaction
model (figure 1, ‘no interactions’) correctly predicts epidemic
dynamics, then within-host interactions are not important dri-
vers of epidemic dynamics in our system. If our no within-host
priority effects model (figure 1, ‘no priority effects’) correctly pre-
dicts epidemic dynamics, then within-host interactions, but not
within-host priority effects are important drivers of epidemic
dynamics in our system. If only our full model (figure 1, ‘“full
model’) predicts epidemic dynamics, then we can conclude that
within-host priority effects alter epidemic dynamics and that by
measuring them, we can accurately predict epidemic dynamics
a priori. If no models correctly predict epidemic dynamics, then
measurements of within-host interactions made experimentally
do not necessarily represent within-host interactions that occur
during an epidemic.

3. Results
(@) Model predictions

Adding within-host priority effects on our predictive models
altered the predicted impact of epidemic arrival order on bac-
terial epidemic dynamics. In all models, the presence of a
fungal epidemic reduced the integrated prevalence, mean
prevalence and epidemic length of bacterial epidemics (elec-
tronic supplementary material, figure S2). All models also
predicted the same impact of epidemic arrival order on bac-
terial epidemic length, with bacterial epidemics lasting longer
when bacterial epidemics start before fungal epidemics.
However, models disagreed on the impact of epidemic arrival
order on the mean prevalence. Models that did not include
within-host interactions predicted no effect of epidemic arri-
val order on the mean prevalence. Models that accounted
for within-host interactions but not within-host priority
effects predicted that the mean prevalence would be higher
when the bacterial epidemic started before the fungal
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epidemic than in other treatments. In sharp contrast, our full
model (including within-host priority effects) predicted the
opposite result: as bacterial epidemic start date moved later
and fungal epidemic start date moved earlier, mean bacterial
prevalence should decrease (figure 3; electronic supplementary
material, figure 52).

All models predicted no change in fungal epidemic
dynamics due to co-infection or epidemic arrival order
(electronic supplementary material, figure S3).

(b) Empirical single-pathogen epidemic dynamics

Both pathogens spread readily through host populations. In
single-pathogen epidemics, the fungus and the bacterium
both reached 100% prevalence in all replicates and maintained
themselves in host populations until host populations went
extinct (figure 4; electronic supplementary material, figure S3).
Bacterial epidemics reached 100% prevalence roughly 40 days
after epidemic start date and stayed close to 100% prevalence
until populations went extinct (figure 4¢). Fungal epidemics
spread much faster and first peaked near 100% prevalence at
day 11 of our experiment, then proceeded to cycle through
multiple epidemic peaks of varying intensity (figure 4f).

(c) How do co-infection and epidemic timing alter
empirical epidemic severity?

Co-infection and relative epidemic start date interacted to
change epidemic dynamics. We saw co-infected individuals
at a high rate in all co-infected treatments (electronic sup-
plementary material, figure S4). Co-infection reduced the
total size of all bacterial epidemics (integrated prevalence of
infected individuals over time, hereafter referred to as
integrated prevalence: only bacterium versus fungus first
p=0.017, only bacterium versus simultaneous epidemics
p=0.046, only bacterium versus bacterium first p=0.048;
figure 3). The integrated prevalence did not significantly
change with shifting epidemic start date (p =1.0). However,
as bacterial epidemics shifted earlier and fungal epidemics
shifter later, bacterial epidemics became longer (p=0.036),

and had lower average prevalence (p=0.0015; figures 3a,e
and b—d). Overall, these results indicate that the relative epi-
demic start date in our system shaped how epidemics were
distributed over time, though not their overall size. Fungal
epidemics were not significantly different in integrated
prevalence, mean prevalence or length across any treat-
ments (electronic supplementary material, table 52; fungal
epidemics appear longer in singly infected populations
in figure 3f due to a single replicate).

(d) Testing model predictions with empirical dynamics
The dynamics of our experimental epidemics best matched
the predictions made by our full model. In cases where
models agreed with one another (predicting that co-infection
would reduce the integrated size of bacterial epidemics and
that bacterial epidemics would become shorter as the bac-
terial epidemic shifted later and the fungal epidemic
shifted earlier), empirical epidemics matched the predictions
of all models (figures 3e-h and 4b—e). However, as the bac-
terial epidemic shifted later and the fungal epidemic
shifted earlier, our empirical data rejected the predictions
of our no priority effect models that the mean prevalence
of bacterial epidemics would increase or stay the same
(figures 3c,d and 4b-e), instead supporting the prediction
of our full model that the mean prevalence of bacterial
epidemics should decrease.

4. Discussion

In natural systems, the arrival order of pathogens within a
host can determine the fitness and transmission of those
pathogens. However, it is still unclear how these within-
host priority effects can alter disease dynamics during
multi-pathogen epidemics. Our study shows that in our
system, pathogen arrival order at the within-host scale inter-
acts with pathogen arrival order at the host-population scale
to determine multi-pathogen epidemic dynamics. Specifi-
cally, we show that co-infection reduced epidemic size,
while the relative start dates of co-occurring epidemics
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Figure 4. Empirical bacterial epidemics (blue, top) changed with co-infection and epidemic arrival order, while fungal epidemics (yellow, bottom) did not. y-axis
shows the prevalence (proportion) of hosts infected over the course of the epidemic. Prevalence includes both singly infected and co-infected hosts. Lines represent
the mean prevalence across non-extinct replicates, with ribbons representing 95% confidence intervals at each time point. Co-infection reduced the integrated
prevalence of all bacterial epidemics (b versus e, p=0.017; ¢ versus e, p=0.046; d versus e, p=0.048). The integrated prevalence did not significantly
change with shifting epidemic start date (p=1.0). As bacterial epidemics shifted earlier and fungal epidemics shifter later, bacterial epidemics became longer
(p=0.036) and had lower average prevalence (p = 0.0015). Fungal epidemics were not significantly different between treatments. (Online version in colour.)

determined how epidemics were distributed over time. Pre-
dictive epidemic models only accurately captured
qualitative multi-pathogen dynamics if they included
within-host priority effects measured at the single-host
scale, indicating that within-host priority effects can be a
mechanism through which disease phenology alters multi-
pathogen epidemics. Taken together, this evidence suggests
that measuring within-host priority effects may increase our
ability to predict multi-pathogen epidemics in the future,
particularly under shifting disease phenology.

(a) Mechanisms of single-pathogen epidemics dynamics
The two pathogens in our study created large epidemics but
exhibited different temporal dynamics. In our single-
pathogen treatments, the sustained high prevalence of the
bacterium (figure 3e) is probably driven by its low probability
of degradation (electronic supplementary material, table S1),
and because this bacterium can remain infectious after
passing through host digestive tracts [35]. Therefore, the bac-
terial spore load in the environment, and thus the probability
of infection, could remain high throughout our experiment.
The cycling pattern in our fungal epidemics (figure 3f) is
due to the synchronized infection and mortality of infected
host cohorts. After fungal spores are introduced to the
environment, hosts will remove most of them via ingestion.
A proportion of those hosts will become infected, and then
all die roughly 10-12 days later due to fungus-induced

mortality, releasing spores back into the environment, and
restarting the cycle.

(b) Mechanisms of multi-pathogen epidemics dynamics
Entering host populations before the fungus could have
increased the mean bacterial prevalence as the bacterium
had time to spread without fungal interference or could
have decreased the mean bacterial prevalence as the bacter-
ium had the lowest fitness within co-infected hosts when it
arrived first (figure 1). Ultimately, we found that bacterial
prevalence was lowest when bacterial epidemics had a
head start (figures 3 and 4). Our epidemic models tease
apart the mechanics of how relative epidemic start date
alters the mean prevalence of the bacterium. The mean bac-
terial prevalence shrinks when the bacterium arrives first
compared to when the fungus arrives first because there is
a high probability of competitive exclusion for the bacterium
when it infects hosts before the fungus (figure 1). Thus, as the
competitive exclusion of the bacterium increases due to
within-host priority effects, the mean prevalence of the bac-
terium during the epidemic decreases. Therefore, in this
system, within-host priority effects are strong enough for
the epidemic start date to change epidemic severity.

Fungal epidemic dynamics showed no change between
treatments, despite our fungal pathogen experiencing stron-
ger within-host priority effects than the bacterium
(figure 1). However, this pattern may be driven by epidemic
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saturation: fungal pathogens reached 100% prevalence very
quickly in all single-pathogen treatments. This high preva-
lence makes it difficult to detect if epidemics facilitate one
another, as epidemic prevalence cannot exceed 100%. Fur-
thermore, it suggests that the spore load of the fungus in
the environment may have been far greater than necessary
to infect all hosts. Under such conditions, fluctuations in
infectious spore yield from co-infected hosts would have no
effect on epidemic dynamics. This indicates that for patho-
gens with very high transmission and prevalence, such as
some gut helminths in wildlife populations [37], their
dynamics may not be impacted by interactions with other
pathogens or by relative epidemic timing.

Ultimately, how epidemic timing and within-host priority
effects altered experimental epidemics depended on the type
of within-host priority effects we observed. In our system,
pathogens had the lowest fitness when they infect co-infected
hosts first (figure 1). For the fungus, we hypothesize co-
infection with the bacterium facilitates the fungus, as the
bacterium causes gigantism via castration [38], allowing
for hosts to contain more spores. However, if the fungus
arrives first, it may disrupt bacterial castration, removing
the facilitative effect. Further experiments are needed to con-
firm this hypothesis. For a system where within-host priority
effects take a different form (e.g. where pathogens have a fit-
ness advantage from prior residency in hosts [17]) the impact
of shifting epidemic phenology will be different than that
seen in our system. However, our results provide evidence
that within-host priority effects can scale up by interacting
with disease phenology and may do so in other systems.

Overall, this study experimentally demonstrates that within-
host priority effects can alter epidemic dynamics in our
system by shifting pathogen fitness in co-infected hosts. Pre-
vious studies have demonstrated that sequential infections
can alter epidemic severity if early arriving pathogens
increase or decrease host susceptibility to further infection
[11,16,20,39]. For instance, endemic infection by helminths
makes tuberculosis invasion easier as helminths increase
host susceptibility to microparasites [11]. Or, in certain grass
hosts, the first-arriving pathogen changes the likelihood of
co-infection by all other pathogens in the system [16]. The
previous theory further shows that within-host priority
effects may alter disease dynamics not only by changing
the likelihood of infection but also by altering competitive
outcomes within hosts, altering the ability of pathogens to
spread through a previously infected population [31,40].
Our study adds to this body of work by providing exper-
imental evidence that within-host competitive outcomes
driven by infection order scale up to alter epidemic
dynamics. These results may apply even when epidemics
do not have separate start dates. This is because hosts will
usually be infected first by the pathogen with the highest
infection risk in a given system [16,21]. Thus, our results
emphasize that we should examine the role of within-host
priority effects in driving disease dynamics whenever a
host population is infected by multiple pathogens.

Though within-host priority effects are important, they are
not the only mechanism through which epidemic timing
impacts epidemic dynamics in our system. We found that
between-host interactions, rather than within-host interactions,

determined variation in epidemic length in our experiments. [ 8 |

Between-host interactions occur when pathogens decrease
the population size of susceptible hosts, decreasing the trans-
mission of density-dependent pathogens [41]. In our
experiments, bacterial epidemics were longer when the bacter-
ium entered the population first than when the fungus entered
the population first. This is because co-infection greatly
decreased population density and drove host populations to
extinction (electronic supplementary material, figure S5C-E).
In total, the length of a bacterial epidemic was proportional
to the time between when bacterium entered the host popu-
lation and when the host population went extinct. Similarly,
in all of our models, bacterial epidemics are longest when
the bacterium enters the population first (figures 2 and 4),
because epidemics start when the bacterium enters the host
population, and end when the host population goes extinct.
Thus, within-host interactions are not needed to predict
some aspects of how epidemic timing alters epidemic patterns.
However, the strength of between-host interactions increases
with pathogen prevalence [39], which depends in part on
within-host interactions. Therefore, within-host interactions
and between-host interactions likely feedback on one another
to determine epidemic severity.

Our results demonstrate that we can predict qualitative
changes in multi-pathogen epidemic dynamics in our
system. Specifically, our models parametrized with within-
host priority effects correctly predicted that epidemic start
date would alter the length and mean prevalence of bacterial
epidemics (figure 3; electronic supplementary material,
figure S2) but would not alter fungal epidemics (electronic
supplementary material, figure S3). Our models did not pre-
dict quantitative epidemic dynamics (e.g. our full model
could not predict pathogen prevalence at a specific time
point in the epidemic, electronic supplementary material,
figure S6) because Daphnia sp. population dynamics are
highly stochastic, follow boom and bust cycles, and depend
on asymmetric competition between different daphnia age
classes [42,43]. We chose a simpler model that would not cap-
ture Daphnia population dynamics, but would better show
the impact of within-host priority effects at the host-
population scale. Further, qualitative disease predictions are
highly valuable in identifying areas of concern, such as
identifying where shifts in disease phenology will lead to
an increase in epidemic severity.

Importantly, our model predicted the qualitative impact
of within-host interactions a priori. Previous multi-pathogen
epidemic models have accurately predicted epidemic
patterns, but these models were parametrized by either
observing or inferring within-host interactions during the
epidemic the models were predicting [8,44,45]. The value of
models with post hoc parametrization lies in predicting multi-
pathogen epidemics that occurs in common spatial and
temporal combinations. For instance, Abu-Raddad et al. [44]
predicted the dynamics of endemic strains of HIV and malaria
in Kenya by observing endemic HIV/malaria interactions in
Malawi. However, for novel pathogen combinations or arrival
orders, experimentally measured within-host interactions must
be used to predict how pathogen interactions will alter
epidemic dynamics a priori. Our results indicate that this
approach can accurately predict qualitative metrics, but also



that we must take into account how within-host interactions
will translate from a laboratory setting to a field setting,
where pathogens face fundamentally different conditions
[46]. For instance, for our models to make accurate predictions,
we needed to assume that within-host competition between
pathogens was higher during experimental epidemics than
during the experiments performed on isolated hosts used to
parameterize our predictive models (an assumption with
empirical support, see electronic supplementary material).
How within-host interactions will change from field to labora-
tory settings will depend on within-host mechanisms. For
instance, hosts rarely compete for resources during experimen-
tal measurements of within-host interactions [25,26,31,47,48].
Within-host competition for resources may then increase
when hosts compete for host resources in the field [49], but
apparent competition via the immune system may decrease
when hosts compete for resources [50]. Thus, to predict how
changing ecology will qualitatively change multi-pathogen epi-
demics before they occur, researchers should examine the
mechanisms underlying within-host priority effects, rather
than simply measuring the impact of sequential infection on
pathogen fitness in a laboratory setting.

Infectious disease research now acknowledges that many
pathogens usually circulate within-host populations [51].
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